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ABSTRACT

In this dissertation I examine the effects of sample selection on the probability

of stroke among older adults. If study subjects are selected into the sample based

on some non-experimental selection process, then statistical analysis may produce

inconsistent estimates.

Chapter 1 develops a model of non-ignorable selection for a discrete outcome

variable, such as whether stroke occurred or not. I start by noticing that in the

literature there are relatively few applications of the Heckman model to the case

of a discrete outcome variable and they are limited to a bivariate case. After that I

extend the Bayesian multivariate probit model of Chib and Greenberg (1998) broadly

following the logic of Heckman’s original (1979) work. The model in the first chapter

of my dissertation is set in a way general enough to handle multiple selection and

discrete-continuous outcome equations.

The first extension of the multivariate probit model in Chib and Greenberg

(1998) allows some of the outcomes to be missing. In particular, stroke occurrence is

missing whenever the person is not selected into the sample. In terms of latent variable

representation this implies that multivariate normal distribution is not truncated in

the direction of missing outcome. I also use Cholesky factorization of the variance

matrix to avoid the Metropolis-Hastings algorithm in the Gibbs sampler.

Chapter 2 evaluates how severe the problem of sample selection is in Assets and

HEAlth Dynamics among the Oldest Old (AHEAD) data set. I start with a more

restrictive assumption of ignorable selection. In particular, I apply the propensity
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score method as in a recent paper by Wolinsky et al. (2009) and find no selection

effects in the study of stroke. Then I consider the model developed in Chapter 1,

which is based on a less restrictive assumption of non-ignorable selection, and also

find no evidence of selection. Thus, the main substantive contribution of this chapter

is the absence of selection effects based on either ignorable or non-ignorable sample

selection model.
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CHAPTER 1
MULTIVARIATE PROBIT AND SAMPLE SELECTION

1.1 Introduction

In this chapter I develop a model of sample selection with multiple outcome

and selection equations in which dependent variables are dichotomous. As an illus-

tration of the sample selection model, consider a sample of elderly Medicare-eligible

Americans. Suppose that some of the respondents have allowed the researcher to

get access to their Medicare claims data. This constitutes the selection equation

which is usually modeled as univariate probit. Suppose further, that the researcher is

concerned about estimating amount of Medicare spending per year, which is the out-

come equation of interest, but she observes only the amounts for patients that allowed

access to their Medicare claims. Economists have been aware for a long time that

estimating such a model by ordinary least squares leads to inconsistent estimates.1

Gronau (1974) seems to be among the first to recognize this problem, but Heckman

(1979) offers a truly pioneering work with a simple two-step estimator that has been

widely used for more than three decades.

In general, the model of sample selection, also referred to as a model with

incidental truncation, has a dependent variable that is missing as a result of a non-

experimental selection process.2 Heckman (1979) recognizes the sample selection

1There is no such problem if the disturbances in two equations have zero correlation.

2Models of sample selection in some classifications also include models with truncation
and censoring. Throughout this chapter I use the terms “sample selection” and “incidental
truncation” interchangeably to refer to a Heckman-type model.
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problem as specification error and offers the following two-step estimator. On the

first step, the binary selection equation is estimated by probit. (Exogenous variables

are assumed to be known for all respondents in the sample.) On the second step, the

outcome equation is estimated only for the observed subsample with one additional

variable: inverse Mills ratio obtained on the first step. Heckman (1979) shows that

this procedure results in consistent coefficient estimates and also provides a corrected

variance matrix for hypothesis testing.

Sample selection remains an active and ongoing research area in literature and

recent textbook presentations (such as Greene 2003 and Wooldridge 2002), as well as

review articles (Vella 1998 and Lee 2003) are available. Most of the research, however,

is limited to the case where the endogenous variable of interest in the outcome equa-

tion is continuous. In addition, the majority of papers deal with a single selection

and a single outcome equation in the sample selection model. In many applications,

however, sample may be chosen based on more than one criterion, or more than one

outcome equations may be considered.

This chapter substantially extends Heckman’s (1979) classic model by adding

two additional features. First of all, it allows binary dependent variable in the out-

come equation as well.3 Continuing with health economics, it might be of interest to

model risk factors of a certain morbid event (such as hip fracture). Secondly, adding

extra selection or outcome equations with dichotomous or continuous dependent vari-

3I review some earlier work on a discrete outcome variable in Heckman’s (1979) model
and explain how my model differs further on.
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ables is straightforward. This extension is crucial in the presence of multiple selection

equations, as explained below. These two extensions seem to be an important con-

tribution to the existing literature with potential applications in health, labor and

related empirical economic research.

While technical issues limited the use of sample selection models with multiple

binary dependent variables, their applicability is potentially very wide. To continue

with the Medicare-eligible sample of elderly Americans, suppose that the researcher

is interested in joint estimation of two or more binary morbid health events (for

example, hip fracture and stroke) but she observes those outcomes only for respon-

dents that gave her access to Medicare claims. Clearly, joint estimation of the two

health events (outcome variables of interest) with a third equation for being in the

analytic sample (selection equation) tends to be more efficient than estimating them

equation-by-equation.4 More importantly, in order to obtain consistent estimates all

of the selection equations have to be included.

Consider another example from financial economics. Suppose that a credit

card company studies the probability of default (outcome equation) for respondents

who received a credit card offer. The first selection equation may be if they accepted

the offer and applied for a card, and the second whether their application was ap-

proved by the bank. In this model, the agent can default only if she was approved for

a credit card, which in turn is possible only if she has responded to such an offer. In

4This is a standard result in seemingly unrelated regression model, which does not apply
if the explanatory variables are the same or if the correlation/covariance terms are zero.
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labor economics it might be of interest to study employment discrimination (observed

for candidates that seek a job) and wage discrimination (observed for candidates that

seek a job and are hired). These two outcome equations can be estimated together

with selection equation (if a candidate is seeking a job or not). All these and related

models can be estimated in the framework developed in this chapter.

How is the problem of sample selection accounted for in the multivariate probit

model? To continue with the health economics example, suppose that there exists

some unobserved factor that affects both the probability of being selected into a sam-

ple and of having a morbid health event. If healthier individuals are more likely

to allow access to their Medicare claims, then estimating the probability of a mor-

bid health event only for the observed subsample is not representative of the entire

population, as only its healthier part is considered. From the discussion above, it is

apparent that in order to consistently estimate a model with incidental truncation,

it is necessary to account for an omitted variable problem. In general, the sample

selection problem arises if the unobserved factors determining the inclusion in the

subsample are correlated with the unobservables that affect the endogenous variable

of primary interest (Vella 1998). In the current chapter the specification error of

omitted variable resulting from selection is dealt with by considering the unobserved

omitted variable as a part of the disturbance term and then jointly estimating the

system of equations accounting for the correlations in the variance-covariance matrix.

The multivariate probit model can be used to handle multiple correlated di-

chotomous variables along the lines of Ashford and Sowden (1970) and Amemiya



www.manaraa.com

5

(1974). It seems, however, that the potential of this model has not been fully re-

alized despite its connection to the normal distribution, which allows for a flexible

correlation structure. As noticed in Chib and Greenberg (1998), the problem arises

from the difficulties associated with evaluating the likelihood function by classical

methods, except under simplifying assumptions like equicorrelated responses, as in

Ochi and Prentice (1984).

Chib and Greenberg (1998) describe how the model can be reformulated in a

Bayesian context using the technique of data augmentation (discussed in Albert and

Chib [1992], among others). The discrete dependent variable in the probit model

can be viewed as the outcome of an underlying linear regression with some latent

dependent variable (i.e. unobserved by the researcher). Consider a decision to make

a large purchase, as in Greene (2003, p. 669). If the benefits outweigh the costs

(benefits-costs>0) then the latent dependent variable is positive and the purchase is

made (the observed discrete outcome is 1), and vice versa. If the researcher makes a

further assumption that the disturbance term in the model with the latent dependent

variable has a standard normal distribution, then the univariate probit model results.

The extension to the multivariate case is relatively straightforward.

The latent variables are clearly not observed, but their distributions are spec-

ified to be normal. Chib and Greenberg (1998) use this fact and re-introduce the

latent variable back into the multivariate probit model. In a typical Bayesian model

the prior distribution of the parameters and the likelihood function are used to ob-

tain the joint posterior distribution, which combines the information from the prior
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and the data. Chib and Greenberg (1998) find the joint posterior distribution of the

multivariate probit model as the product of the prior distribution of the parameters

and augmented likelihood function. The latter is obtained as the product of normal

distributions for latent variables taken over all respondents in the sample. It is easy to

show that, after integrating over the latent variables, the joint posterior distribution

of the parameters is exactly the same as the posterior distribution obtained with-

out introducing any latent variables (see Koop, Poirier and Tobias [2007] for related

examples). The computational advantage of this method — it does not require the

evaluation of the truncated multivariate normal density — is the greater the more

discrete dependent variables are included into the model.

Using the full conditional posterior distributions of the coefficient vector, along

with elements in the variance matrix and the latent data, it is possible to construct a

Markov Chain Monte Carlo (MCMC) algorithm and simulate the parameters jointly

with the latent data. In the Chib and Greenberg (1998) formulation, the conditional

posterior distribution for the elements in the variance matrix has a nonstandard

form and the authors use a Metropolis-Hastings algorithm to draw those elements.

The current chapter modifies the Chib and Greenberg (1998) procedure by using the

Cholesky factorization of the variance matrix. This allows a convenient multivariate

normal representation of the parameters that are used to obtain the variance matrix,

which considerably facilitates estimation.

Another complication in the sample selection model follows from the fact that

some of the dependent binary variables in the outcome equation are not observed
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given the selection rule into the sample. The posterior distribution of the latent data

can be used to simulate those missing observations conditional on the covariance

structure of the disturbance term. Consider first an individual t with complete data

in m × 1 vector of binary responses y.t = (y1t, ..., ymt)
′ for all selection and outcome

equations. The Chib and Greenberg (1998) procedure implies that at each MCMC

simulation the latent vector ỹ.t = (ỹ1t, ..., ỹmt)
′ is drawn from the truncated multivari-

ate normal distribution with a m× 1 mean vector and m×m covariance matrix Σ.5

The distribution is truncated for the ith element ỹit to (−∞, 0] if the binary outcome

yit = −1 and to (0, +∞) if yit = 1. Now suppose that individual t has missing binary

outcome yit for some i. The only difference with the case of an observed binary out-

come yit comes from the fact that the conditional multivariate normal distribution

for ỹit is no longer truncated in the ith dimension. That is, if yit is missing for some

i, then the latent variable ỹit is unrestricted and can take any value in the interval

(−∞,∞).

Identification of the parameters is an important issue in models of discrete

choice. It is well-known that the multivairate probit model is not likelihood-identified

with unrestricted covariance matrix. Even though the formulation of the variance

matrix in this chapter uses only m(m − 1)/2 identified parameters, this turns out

not to be sufficient for identification. Meng and Schmidt (1985) offer an elegant

treatment of the problem of identification in the censored bivariate probit model

5The mean vector for individual t is a product of m× k matrix of covariates and a k× 1
vector of coefficients to be defined later.
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using the general principle in Rothenberg (1971) that the parameters in the model

are (locally) identified if and only if the information matrix is nonsingular. The

conclusion in Meng and Schmidt (1985), that the bivariate probit model with sample

selection is in general identified, applies also with my parameterization of the model.

This chapter is organized as follows. Section 1.2 reviews the literature on

sample selection especially on extensions to models with discrete outcome equation

and Bayesian treatment. Section 1.3 sets up the model and derives the details of the

multivariate probit estimator. Section 1.4 develops the Gibbs sampler. Section 1.5

considers the problem of identification in greater detail. Finally, section 1.6 provides

an illustrative example and the last section concludes the discussion.

1.2 Heckman Model: Relevant Literature

Before developing a Bayesian model of sample selection with binary outcome

variables, it is worth reviewing the relevant previous studies. After formulating a

textbook variant of a Heckman (1979) model, I consider its extensions to models with

discrete outcome equation prevailing in classical econometrics. The second feature of

my research, namely Bayesian modeling of sample selection, is addressed in the third

subsection of this literature review.

1.2.1 Introducing sample selection model

The model of incidental truncation, which is another name for sample selection

model, has been widely used in economic applications when the variable of interest

is observed only for people who are selected into a sample based on some threshold
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rule.6 Consider a simple model in health economics where it is of interest to assess

the amount of Medicare spending for elderly Americans in a given year (outcome

equation), which is observed only for people who allowed access to their Medicare

claims (selection equation). Define the Medicare spending equation for respondent t

as

yot = x′tδ + εt, (1.1)

and the selection equation of being linked to Medicare claims as

ỹst = z′tγ + ut, (1.2)

where ỹst is unobserved. What is observed is a binary variable yst which equals 1

if ỹst > 0 (the agent allows the linking of her Medicare claims to the survey data)

and 0 otherwise. The selection rule is that Medicare spending yot is observed only

when ỹst > 0. If εt and ut have a bivariate normal distribution with zero means and

correlation ρ, then

E[yot|yot observed] = E[yot|ỹst > 0] = x′tδ + ρσελ(−z′tγ/σu), (1.3)

where λ(−z′tγ/σu) = φ(z′tγ/σu)/Φ(z′tγ/σu) as in Greene (2003). OLS estimator of

Medicare spending using equation (1.1) and only the data on respondents who allowed

access to Medicare claims, gives inconsistent estimates of δ as long as ρ 6= 0. This

6There exists extensive research in classical statistics (as opposed to classical economet-
rics) on a related topic of nonignorable nonresponse. A few relevant papers are Conaway
(1993), Baker (1995), Baker and Laird (1988), Diggle and Kenward (1994) and Park (1998).
This literature typically uses some form of ML estimator or EM algorithm, and it is only
remotely related to my current research.



www.manaraa.com

10

model can be estimated via maximum likelihood (ML), but Heckman’s (1979) two-

step estimator is typically used instead (Greene 2003). To obtain estimates of γ, the

probit equation for yst is estimated and for each observation in the selected sample

λ(−z′tγ̂) is computed. In the second stage, δ and δλ = ρσε are estimated by the OLS

regression of yot on x and λ̂. A t-test of the null hypothesis that the coefficient on λ̂

is equal to zero represents a test of no sample selectivity bias (Vella 1998).

Heckman’s (1979) sample selection model is a standard topic in most modern

econometric textbooks (such as Greene 2003 and Wooldridge 2002). Thorough review

of the literature on sample selection is beyond the scope of this chapter, given the

considerable attention that the model has acquired. A few recent review articles

(Vella 1998, Lee 2003 and Greene 2006) seem to be a good starting point for an

interested reader. In the next subsection I consider extensions of the Heckman model

to the case of discrete outcome variable, relevant for my current research, developed

in classical econometrics.

1.2.2 Discrete outcome equation in classical econometrics

There are relatively few applications of Heckman’s (1979) model to discrete

(and count) data and Greene (2008) reviews a handful of such models, starting with

Wynand and van Praag (1981). In a recent application to teen employment, Mohanty

(2002) uses the formulation in Meng and Schmidt (1985), which is very similar to

the bivariate probit model with sample selection in Wynand and Praag (1981). In

Mohanty (2002) the applicant i for a job can be selected (SELi = 1) or not (SELi =
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0) only if she has applied for a job (SEEKi = 1). Both discrete variables are modeled

as the latent variables y1i (SEEKi = 1 if y1i > 0 and SEEKi = 0 otherwise) and y2i

(SELi = 1 if y2i > 0 and SELi = 0 otherwise) that have bivariate normal distribution

with correlation coefficient ρ.

Estimating the hiring equation (SELi) only for the subsample of teens who

applied for a job (SEEKi = 1) produces inconsistent estimates as long as ρ 6= 0.

Indeed, univariate probit shows misleading evidence of employment discrimination

against Black teens, which disappears when participation and hiring equations are

estimated jointly (Mohanty 2002).

Another relevant example in classical econometrics is Greene (1992), who refers

to an earlier paper by Boyes, Hoffman and Low (1989). The (part of the) model in

Greene (1992) is bivariate probit where the decision to default or not on a credit card

is observed only for cardholders (and not the applicants that were rejected by a credit

card company).

Terza (1998) is another important reference in this literature. He develops a

model for count data that includes an endogenous treatment variable. For example,

the number of trips by a family (count variable of interest) may depend on the dummy

for car ownership (potentially endogenous). In this case the dependent variable for car

ownership in the first equation appears as explanatory variable in the equation for the

number of trips and the two equations are estimated jointly. Terza (1998) compares

three estimators for this model: full information ML, non-linear weighted least squares

(NWLS) and a two-stage method of moments (TSM) similar to Heckman’s (1979)
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estimator.7

The setup in Terza (1998) can be potentially used in models of discrete choice

with sample selection, as in a recent paper by Kenkel and Terza (2001). Kenkel and

Terza (2001) use a two-step estimator in the model of alcohol consumption (number

of drinks) with an endogenous dummy for advice (from a physician to reduce alcohol

consumption). The first stage is univariate probit for receiving advice and the second

stage applies non-linear least squares to the demand for alcohol (number of drinks).

Kenkel and Terza (2001) find that advice reduces alcohol consumption in the sample

of males with hypertension, and the failure to account for the endogeneity of advice

would mask this result.

Munkin and Trivedi (2003) discuss the problems with different estimators of

selection models with discrete outcome equation in classical econometrics. The first

class of models, which uses moment-based procedures, results in inefficient estimates

and does not allow the estimation of the full set of parameters in the presence of cor-

related multiple outcomes. A second possibility is a weighted nonlinear instrumental

variable approach that has not been very successful because of difficulties in consis-

tent estimation of weights (Munkin and Trivedi 2003). Finally, simulated maximum

likelihood method requires a sufficient number of simulations for consistency where

it is not clear what is “...the operational meaning of sufficient” (Munkin and Trivedi

2003, p. 198).

7The estimators are listed in the order of decreasing efficiency and computational dif-
ficulty. NWLS estimator may result in correlation coefficient being greater than one in
absolute value.
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It seems that none of the models discussed so far allows multiple correlated

discrete dependent variables in the presence of sample selection (except for the bi-

variate case). Continuing with health economics, it might be of interest to estimate

a model with a single selection equation (in sample or not) and two or more morbid

health events (such as hip fracture and stroke). More importantly, if selection takes

place along multiple dimensions, then each one should be accounted for to avoid the

problems discussed in Heckman (1979). For example, if the sample is limited to par-

ticipants who (i) allowed access to their Medicare claims and (ii) are self-respondents,

then two selection equations can be easily introduced in my model. To the best of

my knowledge, a model capable of estimating this kind of relationships has not been

developed in classical econometrics yet.

The approach that I adopt in this chapter is to apply the multivariate probit

model in Bayesian framework, allowing for some missing responses. Chib and Green-

berg (1998) discuss the problems with estimation of multivariate probit model by

methods of classical econometrics and offer a Markov Chain Monte Carlo algorithm

which constitutes the starting point of my investigation. I review existing Bayesian

treatments of sample selection in the next subsection and then provide further details

on Chib and Greenberg (1998).
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1.2.3 Bayesian treatment of Heckman model

Recent Bayesian treatments of sample selection model are almost exclusively

based on Markov Chain Monte Carlo (MCMC) methods with data augmentation.8

The idea of data augmentation was introduced by Tanner and Wong (1987), and used

in Bayesian discrete choice models starting (at least) from Albert and Chib (1993).9

Latent variables in these models are treated as additional parameters and are sampled

from the joint posterior distribution. In these models, however, the joint posterior

distribution for parameters and latent variables typically does not have a recognizable

form. Gibbs sampler is an MCMC method used when the joint posterior distribution

can be represented as a full set of (simpler) conditional distributions. It is possible

then to obtain the sample from the joint posterior distribution by iteratively drawing

from each conditional distribution, given the values obtained from the remaining

distributions. The model developed herein shares the two aforementioned features

(data augmentation and Gibbs sampling) and simultaneous equation structure with

previous studies by Li (1998), Huang (2001) and van Hasselt (2008).

Li (1998) develops Bayesian inference in the following simultaneous equation

8Earlier developments in Bayesian statistics model selection by means of various weight
functions. For example, Bayarri and DeGroot (1987 and four other papers, as cited in Lee
and Berger 2001) mostly concentrate on indicator weight function: potential observation is
selected into a sample if it exceeds a certain threshold. Bayarri and Berger (1998) develop
nonparametric classes of weight functions that are bounded above and below by two weight
functions. Lee and Berger (2001) use the Dirichlet process as a prior on the weight function.

9Notice that the selection equation in a Heckman-type model is univariate probit.
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model with limited dependent variables (SLDV):

y∗1 = y2γ1 + X1δ1 + u1

y∗2 = X2δ2 + u2, (1.4)

where y∗1 is of Tobit type (a researcher observes y1 = y∗1 if y∗1 > 0 and y1 = 0

otherwise) and y∗2 is of probit type (the researcher observes y2 = 1 if y∗2 > 0 and

y2 = 0 otherwise).10 The vector of disturbances (u1, u2)
′ is assumed to follow bivariate

normal distribution with the variance of u2 set to 1 for model identification:

Σ =




σ2
11 σ12

σ12 1


 ,

where σ2
11 is the variance of u1 and σ12 is the covariance between u1 and u2. Decom-

posing the joint bivariate distribution of (u1, u2)
′ into the product of the marginal

distribution of u2 and the conditional distribution of u1|u2 allows convenient block-

ing in the Gibbs sampler. This decomposition in Li (1998), together with the more

convenient reparametrization of the variance matrix

Σ =




σ2 + σ2
12 σ12

σ12 1


 ,

appear repeatedly in later studies. With these changes the model is now re-defined

as

y∗1 = y2γ1 + X1δ1 + u2σ12 + v1

y∗2 = X2δ2 + u2, (1.5)

10To avoid the confusion with my parameters later on, I use different Greek letters from
those used in the original papers throughout the literature review.
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with u2 = y∗2−X2δ2, σ2 = σ2
11−σ2

12, and v1 ∼ N(0, σ2). In the resulting Gibbs sampler

with data augmentation, all conditional distributions have recognizable forms that are

easy to draw from (multivariate normal, univariate truncated normal and gamma).11

Huang (2001) develops Bayesian seemingly unrelated regression (SUR) model,

where dependent variables are of the Tobit type (researcher observes yij = y∗ij if

y∗ij > 0 and yij = 0 otherwise). The Gibbs sampler with data augmentation in Huang

(2001) consists of multivariate normal, Wishart and truncated multivariate normal

distributions.

In the paper by van Hasselt (2008), two sample selection models — with

unidentified parameters and with identified parameters — are compared.12 The idea

behind the first model is borrowed from McCulloch and Rossi (1994), who used a

similar approach in multinomial probit context. The output from the Gibbs sam-

pler is used to approximate the posterior distribution of the identified parameters.

The model with identified parameters in van Hasselt (2008) uses marginal-conditional

decomposition of the disturbance terms together with more convenient parameteriza-

11Chakravarti and Li (2003) apply this model to estimate dual trade informativeness
in futures markets. Probit equation estimates a trader’s decision to trade on her own
account and tobit equation measures her (abnormal) profit from her own account trading.
Chakravarti and Li (2003) did not find significant correlation between a dual trader’s private
information and her abnormal profit.

12Another interesting paper by van Hasselt (2005) compares the performance of sam-
ple selection and two-part models (when two equations are estimated independently) in a
Bayesian setup. In classical econometrics Leung and Yu (1996) provide conclusive evidence
against negative results in Manning, Duan and Rogers (1987) who claim that two-part
model performs better than sample selection model even when the latter is the true model.
Leung and Yu (1996) show that problems with sample selection model are caused by a
critical problem in the design of experiments in Manning, Duan and Rogers (1987).
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tion of the variance matrix, as in Li (1998).13 The major contribution of van Hasselt

(2008) is relaxing the normal distribution assumption in the sample selection model

via mixture of normal distributions. I do not follow that route and my model remains

fully parametric.

In all the papers cited above the outcome variable is continuous and not dis-

crete. There are two Bayesian papers with discrete outcome variable (and multi-

ple outcome equations) that are worth mentioning: Munkin and Trivedi (2003) and

Preget and Waelbroeck (2006).

Munkin and Trivedi (2003) develop a three-equation model with the first equa-

tion for count data (the number of doctor visits), the second equation for a continuous

variable (the associated health expenditures) and the third equation for a dummy

variable (the type of health insurance plan). The selection problem — demand for

health care that potentially depends on the type of health insurance — is modeled by

using an (endogenous) dummy variable for private health plan. There is no problem

of missing dependent variable for respondents that are not in the sample (i.e. who

did not purchase private insurance). Neither of the correlation coefficients for private

health plan with two variables of interest is statistically different from zero and the

type of insurance does not affect the level of health care use (Munkin and Trivedi

2003).14

13McCulloch, Polson and Rossi (2000) show that fully identified multinomial probit model
comes at a cost: higher autocorrelation in the Markov Chain.

14In a later work, Deb, Munkin and Trivedi (2006), perhaps dissatisfied with a sample
selection model, use a two-part model with endogeneity in a similar context.
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Preget and Waelbroeck (2006) develop a three-equation model with application

to timber auctions. There are two binary dependent variables (if a lot received any

bids and, conditional on receiving at least one bid, if a lot received two or more

bids) and one continuous variable (highest bid for a lot) with an endogenous dummy

variable for the number of bids. Preget and Waelbroeck (2006) comment that in such

models the likelihood function is not always well behaved, especially in the direction of

the correlation coefficients.15 While in Preget and Waelbroeck (2006) the correlation

coefficients are never statistically different from zero, they find that their Bayesian

algorithm “...yields a remarkably stable coefficient for the binary endogenous variable

and was able to deal with irregularities in the likelihood function.”

Two conclusions seem to follow from my review of relevant studies. First of

all, there exist serious computational difficulties when the sample selection model

with multiple dichotomous dependent variables is estimated by methods of classi-

cal econometrics. For example, Munkin and Trivedi (2003) comment on difficulties

associated with estimating their model in a simulated maximum likelihood frame-

work. This provides strong motivation for a Bayesian econometric methodology and

also explains why models similar to mine are typically estimated in a Bayesian and

not classical tradition. Second, even in the Bayesian literature, there seem to be no

15Consider the following sequential probit model: the second binary outcome is missing for
all respondents whose first outcome is “No.” The third binary outcome, if present, is missing
for all respondents who answered “No” in the second equation and so on. Waelbroeck (2005)
argues that in this model the likelihood function is not globally concave and flat in some
directions, which limits practical applicability of the model. Notice that in a two-equation
case, sequential probit is the same model as censored probit except that the two models
may have different interpretation. Keane (1992) discusses similar computational issues in
multinomial probit model.
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published papers that can be used directly to estimate a model with three or more

dichotomous dependent variables. This constitutes an important contribution of the

current chapter.

While my work shares the methods with previous studies (data augmentation,

Gibbs sampling and simultaneous equation structure) it comes from a different area —

multivariate probit model developed in Chib and Greenberg (1998). The next section

introduces the multivariate probit in Chib and Greenberg (1998) and provides the

extensions that make it applicable in the sample selection model.

1.3 Multivariate Probit and Sample Selection

Suppose that a researcher observes a set of potentially correlated binary events

i = 1, ...,m over an independent sample of t = 1, ..., T respondents. Consider the

multivariate probit model reformulated in terms of latent variables as in Chib and

Greenberg (1998). For each of the events i = 1, ...,m define a T × 1 vector of latent

variables ỹi. = (ỹi1, ..., ỹiT )′ and a T × ki matrix of explanatory variables Zi where

each row t represents a 1 × ki vector Zit. Then each latent variable can be modeled

as

ỹi. = Ziβi + εi., (1.6)

where εi. is a vector of disturbance terms that have normal distribution. There is

potential correlation in the disturbance terms for respondent t across events i =

1, ..., m coming from some unobserved factor that simultaneously affects selection

and outcome variables. Let ỹ.t = (ỹ1t, ..., ỹmt)
′ be the vector of latent variables for
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respondent t such that

ỹ.t ∼ Nm(Ztβ, Σ), (1.7)

where Zt = diag(Z1t, ..., Zmt) is an m × k covariate matrix, βi ε Rki is an unknown

parameter vector in equation i = 1, ..., m with β = (β′1, ..., β
′
m)′ ε Rk and k =

∑m
i=1 ki,

and Σ is the variance matrix.

The sign of ỹit for each dependent variable i = 1, ...,m uniquely determines

the observed binary outcome yit:

yit = I(ỹit > 0)− I(ỹit <= 0) (i = 1, ..., m), (1.8)

where I(A) is the indicator function of an event A. Suppose it is of interest to evaluate

the probability of observing a vector of binary responses Y. = (Y1, ..., Ym)′ for indivial

t. Chib and Greenberg (1998) show that the probability y.t = Y.t can be expressed as

∫

Bmt

...

∫

B1t

φm(ỹ.t|Ztβ, Σ)dỹ.t, (1.9)

where Bit ε (0,∞) if yit = 1 and Bit ε (−∞, 0] if yit = −1. Define Bt = B1t× ...×Bmt.

Alternatively, the probability y.t = Y.t can be expressed without introducing

latent variables as

pr(y.t = Y.t|β, Σ) =

∫

Amt

...

∫

A1t

φm(w|0, Σ)dw, (1.10)

where φm(w|0, Σ) is the density of a m-variate normal distribution and Ait is the

interval defined as

Ait =





(−∞, Zitβi) if yit = 1,

(Zitβi,∞) if yit = −1.
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The multidimensional integral over the normal distribution in (1.10) is hard to eval-

uate by conventional methods.16

Instead of evaluating this integral, Chib and Greenberg (1998) use the for-

mulation in (1.9) and simulate the latent variable ỹ.t from the conditional posterior

distribution with mean Ztβ and variance matrix Σ. This distribution is truncated

for the ith element to (−∞, 0] if the observed outcome is yit = −1 and to (0, +∞) if

yit = 1. The current model also assumes that yit = 0 when the response for event i is

missing for t.

It is important to understand what missing binary response means in terms

of the latent data representation. If respondent t has missing binary response yit for

some i then no restriction can be imposed on the latent normal distribution in the ith

dimension. Then the vector ỹ.t is simulated from the m-variate normal distribution

with the same mean and variance as in the complete data case but the distribution

is not truncated for the ith element. For the case of missing outcome i the latent

variable ỹit can take any value in the interval (−∞,∞).17

The multivariate model of incidental truncation can not be estimated using

only the observed data because the endogenous selection variables are constant and

16Quadrature method is an example of nonsimulation procedure that can be used to
approximate the integral. Quadrature operates effectively only when the dimension of
integral is small, typically not more than four or five (Train 2003). The GHK simulator is
the most widely used simulation method after Geweke (1989), Hajivassiliou (as reported in
Hajivassiliou and McFadden 1998) and Keane (1994).

17This methodology allows for continuous endogenous variables as well. In this case ỹjt is
trivially set to the observed yjt for a continuous variable j in each iteration of the MCMC
algorithm introduced below.
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equal to 1. Now, due to simulated missing data one can estimate the variance matrix

Σ, which is the focus of the procedure to account for sample selection. The covariances

in Σ effectively adjust for sample selectivity in the outcome equations by controlling

for unobserved heterogeneity.

The issue of sample selection arises whenever the unobserved factors determin-

ing the inclusion in the sample are correlated with the unobservables that affect the

outcome variable(s) of primary interest (Vella 1998). The critical idea in the current

work is to account for selection in binary outcome equation(s) by jointly estimat-

ing selection and outcome equations while controlling for possible unobserved effect

through multivariate probit with correlated responses. If the covariance terms belong

to the highest posterior density region, this indicates the presence of unobserved effect

and, hence, sample selection bias.

The elements in the variance matrix in the Chib and Greenberg (1998) for-

mulation do not have the conditional posterior distribution of a recognizable form,

which forces them to employ a Metropolis-Hastings algorithm. This chapter makes

the technical advance that allows convenient multivariate normal representation of

the parameters used to obtain the variance matrix. Consider the Cholesky factor-

ization of the inverse of the variance matrix Σ−1 = F̆ · F̆ ′ where F̆ is the lower

triangular matrix. If the diagonal elements of F̆ are arrayed in a diagonal matrix Q

then Σ−1 = F̆Q−1Q2Q−1F̆ ′ = FQ2F (Greene 2003). In the current work the variance

matrix is defined by F which is a lower triangular matrix that has ones on the main
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diagonal and D−1 = Q2 which is a diagonal matrix. Then

Σ = (F ′)−1DF−1, (1.11)

with D = diag{d11, ..., dmm} and F is lower triangular

F =




1 0 0 · · · 0

f21 1 0 · · · 0

f31 f32 1 · · · 0

...
...

...
. . .

...

fm1 fm2 fm3 · · · 1




.

Finally, consider the system of m equations

ỹ︸︷︷︸
Tm×1

=




ỹ1.

ỹ2.

...

ỹm.




, Z︸︷︷︸
Tm×k

=




Z1 0 · · · 0

0 Z2 · · · 0

...
...

. . .
...

0 0 · · · Zm




, β︸︷︷︸
k×1

=




β1

β2

...

βm




,

so that the model can be represented as

ỹ = Zβ + ε, (1.12)

where k =
∑m

i=1 ki and

ε︸︷︷︸
Tm×1

=




ε1

ε2

...

εm




.
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Under the maintained assumption of the normally distributed vector ε it follows that

ε|(β, F, D,Z) ∼ N(0, (F ′)−1DF−1 ⊗ IT ). (1.13)

1.4 Deriving the Gibbs Sampler

Consider a sample of m×T observations y = (y.1, ..., y.T ) that are independent

over t = 1, ..., T respondents but are potentially correlated over i = 1, ...,m events.

Given a prior density p(β, F,D) on the parameters β, F and D the posterior density

is equal to

p(β, F, D|y) ∝ p(β, F,D)p(y|β, Σ), (1.14)

where p(y|β, Σ) =
∏T

t=1 p(y.t|β, Σ) is the likelihood function. Define y.t = (yst, yot),

where yst and yot are selection and outcome variables with some of the y.t’s missing.

In this representation the evaluation of the likelihood function is computationally in-

tensive from a classical perspective. Albert and Chib (1993) developed an alternative

Bayesian framework that focuses on the joint posterior distribution of the parameters

and the latent data p(β, F, D, ỹ1, ..., ỹT |y). It follows then that

p(β, F, D, ỹ|y) ∝ p(β, F, D)p(ỹ|β, Σ)p(y|ỹ, β, Σ) (1.15)

= p(β, F, D)p(ỹ|β, Σ)p(y|ỹ).

It is possible now to implement a sampling approach and construct a Markov chain

from the distributions [ỹ.t|y.t, β, Σ] (t ≤ T ), [β|y, ỹ, Σ] and [F, D|y, ỹ, β].

With unrestricted F or D matrix the multivariate probit model is not identi-

fied. The observed outcomes y.t for respondent t depend only on signs but not mag-

nitudes of the latent data ỹ.t. In a multivariate probit model with m equations only
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m(m− 1)/2 parameters in the variance matrix are identified. Consider the following

transformation of the model F ′ỹ.t ∼ N(F ′Ztβ, D), where D is some unrestricted diag-

onal matrix. The latent regression has the form F ′ỹ.t = F ′Ztβ+D1/2ε.t, where ε.t is m-

variate normal with a zero mean vector and an m×m identity variance matrix. How-

ever, pre-multiplying this equation by α > 0 results in αF ′ỹ.t = F ′Zt(αβ) + αD1/2ε.t

which is the same model corresponding to the same observed data y.t. Since the pa-

rameters in D1/2 cannot be identified, D is set to identity matrix extending the logic

from the univariate probit model in Greene (2003).18

The posterior density kernel is the product of the priors and the augmented

likelihood in equation (1.15).19 The parameters in β and F are specified to be inde-

pendent in the prior. Let the prior distribution for β be normal φk(β|β,B−1) with

the location vector β and the precision matrix B.

It is convenient to concatenate the vectors below the main diagonal in F matrix

as

Fvector =




F2:m,1

F3:m,2

...

Fm,m−1




,

where Fi+1:m,i for i = 1, ..., m − 1 represents elements from i + 1 to m in column i.

18Observe that this is not sufficient for identification and later I give an example from
Meng and Schmidt (1985) when the model is not identified with two equations.

19The term “augmented likelihood” emphasizes the fact that the likelihood includes latent
variables.
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The prior distribution of Fvector is assumed to be
(m(m−1)

2

)
-variate normal

Fvector ∼ N(F vector, H
−1). (1.16)

In this expression F vector is the prior mean of the normal distribution, and the prior

variance matrix H−1 is block-diagonal with

H =




H2:m,2:m 0 · · · 0

0 H3:m,3:m · · · 0

...
...

. . .
...

0 0 · · · H1,1




.

This precision matrix has (m− 1)× (m− 1) matrix H2:m,2:m in the upper left corner

and the matrix dimension is decreasing by one in each consequent block on the main

diagonal. The lower right matrix H1,1 is a scalar. The posterior density kernel is now

|B|1/2 exp
{
− 1

2
(β − β)′B(β − β)

}
(1.17)

· |H|1/2 exp
{
− 1

2
(Fvector − F vector)

′H(Fvector − F vector)
}

· |Σ|−T/2

T∏
t=1

exp
{
− 1

2
(ỹ.t − Ztβ)′Σ−1(ỹ.t − Ztβ)

}
I(ỹ.t ε Bt).

A Gibbs sampler is constructed by drawing from the following conditional

posterior distributions: the vector of coefficients β, the Fvector from the variance

matrix decomposition and the latent vector ỹ.t for each respondent t ≤ T .20

In a typical iteration the Gibbs sampler initiates by drawing the vector of the

coefficients β conditional on Fvector and ỹ.t obtained from the previous draw. The

20Appendix A.1 provides complete details of the Gibbs sampler derivation.
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posterior distribution of β comes from the posterior density kernel and is normal

β|(ỹ, Σ) ∼ Nk(β|β, B
−1

), (1.18)

where B = B +
∑T

t=1 Z ′
tΣ

−1Zt and β = B
−1

(Bβ +
∑T

t=1 Z ′
tΣ

−1ỹ.t). In this last

expression it is understood that for each t , ỹ.t ε Bt.

To obtain the conditional posterior distribution of F , an alternative expression

for the density of ỹ is useful:

p(ỹ|y, β, F, D) ∝ |Σ|−T/2

T∏
t=1

exp
{
− 1

2
(ỹ.t − Ztβ)′Σ−1(ỹ.t − Ztβ)

}
I(ỹ.t ε Bt)

= |FD−1F ′|T/2

T∏
t=1

exp
{
− 1

2
ε′tFD−1F ′εt

}
I(ỹ.t ε Bt)

=
T∏

t=1

m∏
i=1

exp
{
− 1

2
(εt,i + F ′

i+1:m,iεt,i+1:m)2
}

=
m∏

i=1

exp
{
− 1

2

T∑
t=1

(εt,i + F ′
i+1:m,iεt,i+1:m)2

}
, (1.19)

where for each t , ỹ.t ε Bt. In this derivation the restriction D = Im is already imposed.

Then the posterior conditional distribution of Fvector is also normal

Fvector|(y, ỹ, β) ∼ N(
m(m−1)

2

)(F vector, H
−1

). (1.20)

The conditional posterior normal distribution has the posterior precision matrix

H = H +




∑T
t=1 εt,2:mε′t,2:m 0 · · · 0

0
∑T

t=1 εt,3:mε′t,3:m · · · 0

...
...

. . .
...

0 0 · · · ∑T
t=1 εt,mε′t,m




.
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The posterior mean of the normal distribution is equal to

F vector = H
−1

H F vector −H
−1




∑T
t=1 εt,2:mεt,1

∑T
t=1 εt,3:mεt,2

...

∑T
t=1 εt,mεt,m−1




.

Finally, the latent data ỹ.t are drawn independently for each respondent t ≤ T

from the truncated multivariate normal distribution as described in Geweke (1991).

The algorithm makes draws conditional on Zt, β and F as well as ỹ.t obtained in

the previous draw. The multivariate normal distribution is truncated to the region

defined by the m× 2 matrix [a, b] with a typical row i equal to (0,∞), if yit = 1 and

(−∞, 0) if yit = −1. If yit is not observed, then row i is (−∞,∞).

Thus, this work extends Chib and Greenberg (1998) in the following two ways:

(i) it permits missing outcome variables ỹ.t, and (ii) it re-parameterizes the variance

matrix in terms of more convenient multivariate normal Fvector that is used to obtain

Σ.

1.5 The Problem of Identification

Identification is an important issue in models of discrete choice. Meng and

Schmidt (1985) in their elegant article offer an excellent treatment of identification

in a bivariate probit model under various levels of observability. Meng and Schmidt

(1985) rely on the general principle in Rothenberg (1971) that the parameters are

(locally) identified if and only if the information matrix is nonsingular. In particular,

their Case Three: Censored Probit is very similar to the following bivariate sample
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selection model: the binary variable of interest y2t is observed for respondent t only

if she is selected in the sample (y1t = 1).21

Let F t = F (Z1tβ1, Z2tβ2; f21) specify the bivariate normal cumulative distri-

bution function and Φ(Zhtβh) specify the univariate standard normal cumulative dis-

tribution function with h = 1, 2 for respondent t. Recall that the sign of ỹit perfectly

predicts yit and one can write

p(y|ỹ) =
T∏

t=1

I(ỹ1t > 0)I(ỹ2t > 0)I(y1t = 1)I(y2t = 1)

+I(ỹ1t > 0)I(ỹ2t ≤ 0)I(y1t = 1)I(y2t = −1) + I(ỹ1t ≤ 0)I(y1t = −1).

The likelihood function in the bivariate model can be obtained after I integrate over

ỹ in the following way

∫

B

p(y, ỹ|β, Σ)dỹ =

∫

B

p(y|ỹ, β, Σ)p(ỹ|β, Σ)dỹ =

∫

B

p(y|ỹ)p(ỹ|β, Σ)dỹ

=
T∏

t=1

∫ ∞

−∞

∫ ∞

−∞

[
I(ỹ1t > 0)I(ỹ2t > 0)I(y1t = 1)I(y2t = 1)

+I(ỹ1t > 0)I(ỹ2t ≤ 0)I(y1t = 1)I(y2t = −1) + I(ỹ1t ≤ 0)I(y1t = −1)
]

·f(Z1tβ1, Z2tβ2; f21)dỹ1tdỹ2t

=
T∏

t=1

∫ ∞

0

∫ ∞

0

I(y1t = 1)I(y2t = 1)f2dỹ1tdỹ2t

+
T∏

t=1

∫ 0

−∞

( ∫ ∞

0

I(y1t = 1)I(y2t = −1)f2dỹ1t

)
dỹ2t

+
T∏

t=1

∫ 0

−∞
I(y1t = −1)φ(Z1tβ1)dỹ1t

(1.21)

21I employ different parametrization of the variance matrix and, thus, the parameters
have to be scaled to be comparable with Meng and Schmidt (1985).
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=
T∏

t=1

F (Z1tβ1, Z2tβ2; f21)
I(y1t=1)I(y2t=1)

·[Φ(Z1tβ1)− F (Z1tβ1, Z2tβ2; f21)]
I(y1t=1)I(y2t=−1)

·[1− Φ(Z1tβ1)]
I(y1t=−1),

where f = f(Z1tβ1, Z2tβ2; f21) is bivariate normal density function and φ(·) is uni-

variate normal density function. Define qit = yit+1
2

for i = 1, 2 and take the natural

logarithm of this expression to obtain

ln L(Z1β1, Z2β2; f21) = (1.22)

T∑
t=1

[
q1tq2t ln F t + q1t(1− q2t) ln[Φ(Z1tβ1)− F t] + (1− q1t) ln[1− Φ(Z1tβ1)]

]
,

which is equivalent to equation (6) in Meng and Schmidt (1985) except for the cor-

relation coefficient ρ being replaced by the parameter f21 that enters F t as defined

below equation (1.11). The general conclusion reached by Meng and Schmidt (1985)

is that the parameters in this model are identified except in certain “perverse” cases.

First of all, peculiar configurations of the explanatory variables may cause noniden-

tification, but this problem can be addressed only given the data at hand. Second,

nonidentification may be caused by certain combinations of parameters in the model.

For example, the censored bivariate probit model with my parametrization is not

identified when Z1tβ1 = −f21√
1+f2

21

Z2tβ2 for all respondents t and I show this result in

Appendix A.2.22 The information matrix is then singular because the row for the

22Another example of nonidentification given in Meng and Schmidt (1985) is when there
are only intercepts included in all equations. While such a model cannot be used in a
meaninful way for economic analysis, it provides an interesting limiting case when all the
covariate coefficients go to zero.
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second intercept (i.e. for (k1 + 1)th term) is the last row (i.e. for the parameter f21),

divided by a constant. In this particular example the problem of nonidentification

does not arise as long as the set of explanatory variables is not the same in two

equations.

Meng and Schmidt (1985) comment that there might also be other combina-

tions of parameters or particular configurations of explanatory variables leading to

nonidentification. Since it is not possible to foresee all such problems a priori, it is the

responsibility of the researcher to check if the parameters in the model are identified.

However, it is very reassuring that the sample selection model is generally identified,

except in some (not very likely) cases.

1.6 Experiments with Artificial Data

The purpose of the experiment with artificial data is to study if the model

can retrieve the parameters and the correlation coefficient that are used to generate

the data when some of the outcome variables are missing. It is also of interest to

assess the convergence properties of the model. I construct the following bivariate

probit model with sample selection. Let y2t be the dichotomous dependent variable

of interest that is observed only if the selection variable y1t is equal to 1.

For this experiment I generate t = 1, ..., 500 independent latent variables

(ỹ1t, ỹ2t)
′ from the bivariate normal distribution with mean µt = [Z1tβ1,.

√
1 + f 2

21, Z2tβ2,.]
′,

where a 1× 3 vector Zit contains intercept, one discrete and one continuous variable

as described below and βi,. = [βi,1 βi,2 βi,3]
′ for i = 1, 2. Each equation contains the



www.manaraa.com

32

intercept denoted βi,1, continuous variable βi,2 and discrete variable βi,3. Continuous

variable in each equation is drawn from the normal distribution with µ = −0.5 and

σ = 2. Discrete variable takes values of −1 and 1 with equal probability. All contin-

uous and discrete variables are independent from each other. The coefficients used

to generate the artificial data are provided in the second column of Table 1.1. The

correlation coefficient is set to 0.5 with the corresponding value of f21 ≈ −0.5774.

Finally, the 2× 2 covariance matrix is the same for all respondents and is set to

Σ =




1 + f 2
21 −f21

−f21 1


 .

Observe that the true parameters of the first equation are multiplied by
√

1 + f 2
21

and in each simulation I normalize the draws of β1,. by
√

1 + f 2
21 obtained in the

same draw. After I obtain the 500 × 2 matrix of the latent variables ỹ, I convert it

into the matrix of “observed” dichotomous dependent variables y which is used in the

simulator. The coefficients that were chosen place approximately one third in each of

the three bins (yes, yes), (yes, no) and (no,missing).

The implementation of the Gibbs sampler is programmed in the Matlab en-

vironment with some loops written in C language. All the codes successfully passed

the joint distribution tests in Geweke (2004). The results in this section are based

on 24,000 draws from the posterior (the first 6,000 draws were discarded as burn-in

iterations). The prior for i = 1, 2 vector of coefficients βi,. is mutlivariate normal with

the mean vector set to zeros and the variance matrix equal to the identity matrix of

dimension 3. The prior for f21 is standard normal distribution.
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The results of the experiment are shown in Figures 1.1-1.3 and Table 1.1.23

The simulator works quite well in this experiment with low autocorrelation and sta-

ble results with histograms centered almost at the values of the parameters used to

generate the data. Geweke’s convergence diagnostic test (Geweke 1992) does not in-

dicate problems with the convergence of the Markov Chain. The only slight problem

is that the mean of the correlation coefficient ρ in the sample obtained from the joint

posterior distribution (0.23) is somewhat lower than the value of 0.5 used to obtain

the artificial data but it still belongs to the 95% highest posterior density interval.

1.7 Concluding Remarks

This chapter develops a sample selection model for discrete or mixed continuous-

discrete outcomes with multiple outcome and selection equations. To facilitate the

estimation of a resulting multivariate probit model, a Bayesian reformulation in terms

of latent variables is extended from the Chib and Greenberg (1998) paper that of-

fers a convenient simulation procedure aimed at resolving the problems of evaluating

the integral of multivariate normal density by classical methods. The essence of the

method is to jointly simulate the parameters and the latent variables from conditional

posterior distributions using a Markov Chain Monte Carlo algorithm. If there is any

unobserved heterogeneity for each agent t, it is properly accounted for as a part of

the disturbance terms by the covariance structure of the variance matrix resulting

from a joint estimation of a system of equations.

23To obtain some of the statistics I used the MATLAB program momentg.m by James
LeSage.
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Figure 1.1: Posterior distributions — selection equation.
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Figure 1.2: Posterior distributions — stroke equation.
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Figure 1.3: Posterior distribution — correlation coefficient.

This chapter also makes two technical advances to the Chib and Greenberg

(1998) setup by (i) adding some missing binary responses and (ii) simplifying the

estimation of the variance matrix via a multivariate normal representation of the

elements in the lower triangular matrix from the Cholesky factorization of Σ−1. I

also discuss how the results on identification in Meng and Schmidt (1985) apply in

the bivariate probit model with sample selection.

In addition to introducing the multivariate probit model with sample selection,

this chapter also offers some interesting topics for further research. In particular, it

might be of interest to further study the identification in the case of three and more

equations, which clearly depends on the selection rule into a sample. The likelihood

is different in each particular case and extensive study of this topic along the lines of

Meng and Schmidt (1985) may be rewarding. Alternatively, some of the potentially
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Table 1.1: Statistics based on posterior distribution

Coefficient True Value Posterior mean Posterior std NSE CD
β1,1 2 2.0470 0.1902 0.0068 -0.6033
β1,2 1 0.9994 0.0912 0.0034 -0.5040
β1,3 1 0.9036 0.1090 0.0032 -0.5625

β2,1 1 1.2122 0.1707 0.0076 -0.3340
β2,2 1 1.0834 0.1299 0.0076 -0.2923
β2,3 1 1.1042 0.1509 0.0075 -0.3694

ρ 0.5 0.2332 0.1709 0.0069 -0.3500

Note: “True Value” — stands for the true value, “Posterior std” — posterior
standard deviation, “NSE” — numerical standard error (4% autocovariance
tapered estimate), “CD” — test statistics for Geweke’s convergence diagnos-
tics.

interesting topics in empirical health and labor economics outlined in the introduction

can be done with little (or no) modification of the model in this chapter.
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CHAPTER 2
SAMPLE SELECTION AND THE PROBABILITY OF STROKE

AMONG THE OLDEST AMERICANS

2.1 Introduction

In this chapter I apply the multivariate probit model of sample selection de-

veloped in the first chapter to study the risk factors associated with stroke among

the oldest Medicare-eligible Americans. The problem of missing data often com-

plicates empirical work based on survey data in health economics and other social

sciences. From a theoretical perspective, statistical methods typically assume that

all the information is available for the observations included in the sample and, as

such, the majority of statistical textbooks have little to say about how to deal with

missing data (Allison 2001). From an empirical point of view, most survey data

sets are characterized by global non-response when respondents refuse to participate,

missing item-specific information for a particular respondent or attrition when some

respondents are lost over time.

Given the severity of the issue, it is not surprising that many different methods

have been developed to mitigate the problem of missing data. The choice of appro-

priate methods depends on assumptions of the underlying missing data mechanisms.

For the purposes of this chapter, missing data mechanisms can be defined by the

following three classes: data missing completely at random, data missing at random

and models of sample selection.1

1Data are said to be missing completely at random if the probability of missing data on
any variable is independent of the value of any variable in the data set. In this case it is
sufficient to exclude any observations with missing data and estimate the model by any of
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In this chapter I use the data from the Survey on Assets and HEAlth Dynamics

among the Oldest Old (AHEAD). AHEAD is a large and nationally representative

sample of Americans 70 years old or older at the time of their baseline interviews

in 1993-1994. In 1998 AHEAD was merged with the Health and Retirement Study

(HRS) to provide a common longitudinal data set (Leacock 2006). The HRS is

sponsored by the National Institute of Aging (grant number NIA U01AG009740) and

is conducted by the University of Michigan.

The issue of selection came up as a part of a larger study of health services

use by the oldest old Americans.2 Professor Wolinsky and his colleagues at The

University of Iowa are among a handful of research groups that are approved to

link the HRS/AHEAD survey data to a restricted data set of respondents’ Medicare

claims. This gives me a unique possibility to work with a very rich data set not

available to many other researchers.

This data set is particularly convenient for research purposes as it allows an

investigator to identify changes in the health status of Medicare eligible respondents,

from their Medicare claims, for up to 12 years after the baseline interviews in 1993-

1994. I broadly follow Wolinsky et al. (2009) in the way of defining selection of

AHEAD respondents into the sample used in the empirical analysis. First of all,

the AHEAD analytic sample is limited to participants that allowed access to their

Medicare claims. Medicare claims are used to find out if a person has experienced

the available methods.

2National Institute on Aging: Health and Health Services Use in the HRS/AHEAD, NIH
grant R01 AG-022913 to Professor Fredric Wolinsky.
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stroke after the baseline in 1993-1994. The second restriction is that a person should

not be in managed care at the baseline (and she is censored out if she enrolls past

baseline). Selection occurs here because managed care plans do not have the same

data reporting requirements as fee-for-service Medicare plans. Thus, selection may be

a serious issue when dealing with the AHEAD data as only 5,983 respondents out of

7,367 who have complete data on independent variables meet both selection criteria.3

In the current application to health economics, it is of interest to model the

risk factors associated with the probability of stroke among the AHEAD respondents

prior to death or enrollment into managed care in up to 12 years after the baseline.

This morbid event places a substantial burden on elderly Americans and identifying

the key risk factors should reduce this burden as it informs health care professionals

about specific prevention steps that can be targeted. The occurrence of stroke can be

verified only if a person allowed linkage to her Medicare claims and she is not enrolled

into managed care. If either of these two conditions is violated for respondent t, then

the data on whether a health event occurred is missing. In order to obtain consistent

coefficient estimates it is necessary to account for the missing data in the AHEAD

analytic sample.

One way to proceed is to assume that data are missing at random and apply

one of propensity score, multiple imputation or maximum likelihood (ML) methods

3Wolinsky et al. (2009) also exclude proxy respondents because they do not have survey
data on their cognitive status. Proxy status does not prevent a researcher from obtaining the
information on stroke occurrence. In addition, the total number of people in the AHEAD
data set is slightly higher (7,447 respondents) in Wolinsky et al. (2009). Respondents that
have some missing independent variables (80 people) were excluded from the sample in the
current chapter.
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to account for this type of missing data.4

This chapter uses re-weighting of observations based on propensity scores as

in Wolinsky et al. (2009). The estimated probabilities of inclusion into the analytic

sample can be obtained for all 7,367 AHEAD respondents from a multivariate logistic

regression. The predicted probabilities are then divided into deciles and the average

participation rate P (i.e., the percent of respondents in the analytic sample in each

decile) is determined. The inverse of participation rate can now be used to re-weight

the observations in the probit equation for stroke that is estimated only for 5,983

respondents in the analytic sample. This procedure accounts for ignorable selection

if data are missing at random because it gives higher weight to participants that are

more similar to those who are not included.5

It turns out that accounting for ignorable selection by using this propensity

score method makes almost no difference in significance of the coefficients in the probit

equation for the probability of stroke among the oldest old Americans.6 It might be

hard to say a priori how realistic is the assumption of data missing at random. This

calls for some alternative selection mechanism, the underlying assumption of which

4Data are missing at random when the probability of missing data on variable Y is
independent of the value of Y after controlling for all other variables X in the analysis
P (Y missing|Y, X) = P (Y missing|X). If, in addition, parameters governing missing data
process are unrelated to the parameters that are estimated, the missing data mechanism is
ignorable (Allison 2001).

5This is just one of a myriad of propensity score methods with some others reviewed in
D’Agostino (1998), Rosenbaum and Rubin (1983) and Rubin (1979).

6This follows from comparing the point estimates in the univariate probit models esti-
mated by maximum likelihood with and without reweighting by propensity scores.
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may be tested.

In the first chapter of this dissertation I consider an alternative sample selec-

tion model using the multivariate probit setup in Chib and Greenberg (1998). This

model extends Heckman’s (1979) classic Econometrica paper on sample selection to

the case when the outcome variable of interest is discrete. The Bayesian model in the

first chapter extends the multivariate probit setup in Chib and Greenberg (1998) as

it (i) permits missing outcome variables in the outcome equation and (ii) simplifies

the parameterization of the variance matrix. The joint posterior distribution is ob-

tained from combining the priors and augmented likelihood function based on latent

(unobserved) variables. The simulation from this posterior distribution is made by

means of Gibbs sampler, as described in the first chapter of the dissertation.7

I implement the model using g-prior (Zellner 1986) and perform prior pre-

dictive analysis as described in Geweke (2005) to learn if the model and the priors

impose any unreasonable restrictions on the outcome. Prior predictive analysis in-

dicates that the parameterization in the sample selection model allows virtually any

outcome in the stroke equation. This implies that the prior is non-restrictive and the

model is adequate for current purposes. The MCMC algorithm demonstrates good

convergence properties, which makes it applicable in other empirical studies with a

binary outcome variable. The sample selection model also does not indicate serious

selection issues in the AHEAD data, which is consistent with my earlier model based

7Gibbs sampler iteratively draws from the full set of conditional distributions that have
recognizable form conditional on the draws obtained in the previous run of the sampler.
Geweke (2005) provides extensive explanation on this topic.
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on propensity scores. Thus, relaxing the assumption from ignorable to non-ignorable

selection does not detect additional sources of selectivity from unobserved variables.

This chapter is organized as follows. Section 2.2 introduces the AHEAD data

set and the analytic sample as well as defines dependent and explanatory variables.

Section 2.3 lays out the propensity score method based on the assumption of data

missing at random and reports the results of univariate probit estimations for the

observed AHEAD subsample using different weights. Section 2.4 deals with the prior

predictive analysis and reports the results from the multivariate probit model. The

last section concludes the discussion.

2.2 The Probability of Stroke in the AHEAD Data

In the current application I study the risk factors associated with the probabil-

ity of stroke in the presence of possible sample selection in the AHEAD data set. The

Asset and HEAlth Dynamics among the Oldest Old (AHEAD) started as a distinct

data survey in 1993 and was merged in 1998 with the Health and Retirement Study

(HRS) to provide a common longitudinal data set. The original AHEAD cohort can

be identified in the current HRS data set, and it includes Americans born between

1890 and 1923 who have been interviewed in 1993, 1995, 1998 and every two years

thereafter as a part of the present HRS study. As noted in Servais (2004, p. 1),
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“The study paints an emerging portrait of an aging America’s physical and mental

health, insurance coverage, financial status, family support systems, labor market

status, and retirement planning.”

Stroke among older Americans is a frequent and severe health event that often

has devastating health consequences. Wolinsky et al. (2009) cite the following facts

about the severity of the effects that stroke has on the health and assets of older

Americans: (i) 780,000 Americans experienced stroke (first-ever or recurrent) in 2005;

(ii) 150,000 people died from their stroke, making stroke the third leading cause of

death in the US; (iii) a mean lifetime cost of a stroke is projected to reach $140,000

per stroke patient.8 The first step in reducing the burden of this health event lies

in identifying the stroke risk factors so that the necessary intervention points can be

targeted.

The model of sample selection with dichotomous dependent variables devel-

oped in the first part of this thesis is applied to the sample selection equation and

outcome equation (whether a respondent has had a stroke). Respondent t is selected

into the sample if (i) she has allowed access to her Medicare claims and (ii) she has

not been enrolled into managed care at the baseline interview in 1993-1994. Medicare

claims are used to identify whether stroke occurred after the baseline. Managed care

plans do not have the same data reporting requirements as fee-for-service Medicare

plans. If either condition is violated, the data on stroke occurrence is missing because

8For the sources of these and other stroke related facts please refer to Wolinsky et al.
(2009).
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there is no reliable way of identifying whether this morbid event has happened. The

AHEAD data are characterized by the following outcomes for T = 7, 367 respondents

who have complete data on independent variables:

Sample selection equation. Is respondent selected into sample?

y1t =





Yes = 1 Medicare claims and not in managed care (5,983 respondents),

No = −1 If either condition violated (1,384 respondents).

The outcome (whether stroked occurred) is observed only for the 5, 983 respondents

that are selected into a sample:

Outcome equation. Has a stroke occurred to respondent t after the baseline

interview?

y2t =





Yes = 1 if a stroke occurred (606 respondents),

0 missing, if the occurrence cannot be verified (1,384 respondents),

No = −1 if a stroke did not occur (5,377 respondents).

This work follows the Wolinsky et al. (2009) definition of high sensitivity low speci-

ficity stroke (minimal false negatives but excessive false positives) as an indicator for

the occurrence of a stroke.9

The full AHEAD sample in Wolinsky et al. (2009) includes 7,447 respondents,

80 of whom were excluded here due to some missing independent variables.10

9Throughout this study of stroke I borrow the data definitions from the paper by Wolin-
sky et al. (2009).

10These include 77 observations with missing body mass index and 3 observations with
missing smoker status. One way to extend the current model is by endogenizing missing
independent variables.
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The independent variables can be organized in the following broad categories

as in Wolinsky et al. (2009):

· Sociodemographic factors — age, gender, race, marital status

· Socieconomic factors — education, income, number of health insurance poli-

cies, neighborhood safety

· Residence characteristics — population density, region of the US, type of

residence

· Health behavior factors — body mass index, smoking and drinking history

· Disease history — whether the respondent was diagnosed to have a health

condition prior to the baseline interview, the number of doctor visits in the past year

· Functional status — self-rated health, number of difficulties with Activities

of Daily Living (ADLs) and Instrumental Activities of Daily Living (IADLS).11

The exact definitions of the independent variables, as well as their means and

standard deviations, are reported in Appendix B.1.

2.3 Results of Univariate Probit Estimation

2.3.1 Propensity Score Method

Before considering the results of the multivariate sample selection model it is

worthwhile to describe the results under the alternative assumption of data missing at

random. In particular, three univariate probit equations are estimated for the same

11In some studies the cognitive status factors are also included in the analysis, which
are observed only for self-respondents. This chapter deals only with missing endogenous
variables, so these variables are not considered. An extension to the current model may
endogenize missing independent variables. Proxy status does not prevent the researcher
from observing the occurrence of stroke.
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independent variables as in the multivariate case, but the sample is restricted only

to the individuals that have data on stroke occurrence. These equations include un-

weighted observations, observations weighted by WTRNORM , which is the centered

respondent weight from HRS, and, finally, observations weighted by WTRNORM/P ,

where P is the average participation rate as explained below. WTRNORM adjusts

for the unequal probabilities of selection due to the multi-stage cluster and over-

sampling of African Americans, Hispanics, and Floridians. The minimum weight in

my sample is 0.238 and the maximum value is 2.857.12

The dependent variable in these models is whether or not a stroke occurred,

y2t, which now can take only values of “Yes=1” and “No=-1” and is observed only if

y1t = 1. The explanatory variables for the stroke equation include all those found to

be significant in the Wolinsky et al. (2009) paper (with some modifications), as well

as some additional variables.

The propensity score is the conditional probability of being assigned to a

risk group, given the observed covariates. To estimate the propensity scores, some

identifying assumptions about the distribution of the selection binary variable must

be adopted. Once the propensity score is estimated, it can be used to reduce bias

through matching, stratification, regression adjustment or some combination of the

above (D’Agostino 1998, Rosenbaum and Rubin 1983, Rubin 1979).

This chapter follows Wolinsky et al. (2009) in the way of using propensity

12The distribution of WTRNORM is skewed to the right with a 5th percentile equal to
0.517 and the 95th percentile of 1.592.
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Table 2.1: The results of univariate probit for stroke (unweighted)

Parameter Coefficient Standard Error χ2 p-value
Intercept -2.030 0.368 < 0.001
Age 0.004 0.004 0.354
Men -0.049 0.052 0.342
African American 0.105 0.068 0.124
Hispanic 0.112 0.104 0.284
Widowed 0.071 0.053 0.180
Divorced/Separated -0.111 0.109 0.306
Never Married 0.210 0.125 0.093
Religion not Important 0.089 0.072 0.219
Grade School -0.054 0.057 0.343
College -0.085 0.057 0.133
Mobile Home 0.014 0.095 0.883
Multiple Story Home 0.085 0.047 0.073
BMI 0.009 0.005 0.072
Diabetes 0.147 0.066 0.026
Heart 0.071 0.051 0.160
Hypertension 0.105 0.046 0.024
Previous Stroke 0.384 0.070 < 0.001
Poor Self-Rated Health 0.075 0.075 0.317
Fair Self-Rated Health 0.096 0.056 0.083
ADL Sum -0.028 0.030 0.345
IADL Sum -0.003 0.025 0.910
Picking up a Dime 0.143 0.079 0.069

Note: “Coefficient” stands for the coefficient estimate, “Standard
Error” — for the standard error of the estimate and “χ2 p-value” —
for the p-value of the chi-square test that the coefficient is zero.
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scores to adjust for ignorable selection. A multivariable logistic regression model

of inclusion in the analytic sample is estimated for all 7,367 AHEAD participants

that have no missing explanatory variables. Predictors include all of the available

independent variables as well as some interaction terms. The resulting model is

used to estimate the predicted probabilities of being in the analytic sample. The

predicted probabilities are then divided into deciles and the average participation

rate P (i.e., the percent of respondents in the analytic sample in each decile) is

determined. The original AHEAD weights WTRNORM are re-weighted by the

inverse of participation rate (1/P ) and then re-scaled so that the sum of weights

equals the number of participants in the analytic sample. This procedure gives greater

influence to participants in the analytic sample most like those not included.

2.3.2 The Probability of Stroke

Table 2.1 reports the results of univariate probit with unweighted observations

for the stroke equation. The probability of stroke increases for respondents that were

never married, living in multiple story home, of those with higher body mass index,

of patients with diabetes, hypertension and previous stroke at the baseline, for people

that reported fair self-rated health and having difficulty picking up a dime. These

results somewhat differ from findings in a recent paper by Wolinksy et al. (2009)

because I used slightly different definitions of the independent variables.

The results of univariate probit with observations reweighted by propensity

score are given in the last three columns of Table 2.2. In terms of significant predictors

of stroke there are certain differences with the case of unweighted probit. Widowed
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respondents and patients with prior heart disease are more likely to have a stroke,

while body mass index is no longer a significant predictor. The reader might think

that accounting for missing data by using propensity scores changed the results. In

fact, all the differences come from using HRS weight WTRNORM as the first three

columns in Table 2.2 indicate. Indeed, the same risk factors remain significant and

even their estimates are very close. It seems that the HRS team did a really good job

in terms of developing the WTRNORM weight and there is virtually no difference

if those weights are adjusted by propensity scores.

Judging from those comparisons it follows that accounting for ignorable selec-

tion in the AHEAD data does not substantially affect the estimates in the univariate

probit equation for the probability of a stroke. The next model I consider — the bi-

variate probit model with sample selection — is based on a less restrictive assumption

of non-ignorable selection.

2.4 Sample Selection Model

The multivariate probit model with sample selection is developed in the first

chapter of this dissertation. The Gibbs sampler is run over the full conditional set

of posterior normal distributions for the coefficient vector β, the element of variance

matrix decomposition F and the multivariate truncated normal distribution for each

respondent t. The explanatory variables in the stroke equation are the same as in

the univariate probit models above. It is believed that socioeconomic characteristics

and place of living affect the probability of being selected into a sample. Functional

status variables are included in both equations. The convergence properties of the
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Table 2.2: The results of univariate probit for stroke using two weights
Model Weights WTRNORM WTRNORM/P

Parameter Coef. St.er. χ2 p-value Coef. St.er. χ2 p-value
Intercept -1.973 0.375 < 0.001 -1.865 0.374 < 0.001
Age 0.003 0.004 0.566 0.001 0.004 0.823
Men -0.035 0.053 0.502 -0.030 0.053 0.570
African American 0.107 0.077 0.162 0.113 0.076 0.136
Hispanic 0.138 0.122 0.255 0.132 0.119 0.267
Widowed 0.104 0.055 0.056 0.119 0.055 0.029
Divorced/Separated -0.011 0.111 0.918 -0.004 0.110 0.968
Never Married 0.242 0.122 0.046 0.238 0.122 0.051
Religion not Important 0.115 0.072 0.108 0.097 0.071 0.176
Grade School -0.064 0.059 0.277 -0.065 0.059 0.269
College -0.069 0.056 0.220 -0.063 0.056 0.259
Mobile Home -0.004 0.100 0.970 0.013 0.098 0.896
Multiple Story Home 0.111 0.047 0.018 0.118 0.047 0.013
BMI 0.008 0.005 0.102 0.008 0.005 0.120
Diabetes 0.162 0.067 0.016 0.159 0.067 0.017
Heart 0.097 0.051 0.058 0.101 0.051 0.048
Hypertension 0.112 0.047 0.017 0.119 0.047 0.011
Previous Stroke 0.354 0.072 < 0.001 0.349 0.072 < 0.001
Poor Self-Rated Health 0.062 0.078 0.425 0.051 0.078 0.513
Fair Self-Rated Health 0.131 0.056 0.019 0.129 0.056 0.020
ADL Sum -0.022 0.031 0.479 -0.017 0.030 0.571
IADL Sum -0.016 0.027 0.546 -0.015 0.026 0.558
Picking up a Dime 0.150 0.079 0.059 0.160 0.080 0.046

Note: “Coef.” stands for the coefficient estimate, “St.er.” — for the standard error
of the estimate and “χ2 p-value” — for the p-value of the chi-square test that the
coefficient is zero. The first three columns use WTRNORM and the last three
columns use WTRNORM/P as weights.
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correlation coefficient are not affected even if the same set of variables is used in both

equations.

2.4.1 Prior predictive analysis

Before the estimation can proceed, it is necessary to set the prior hyperparam-

eters for the vector of coefficients β as well as F used for variance decomposition. One

way to achieve this is by means of prior predictive analysis, as described in Geweke

(2005). The purpose of prior predictive analysis is to ascertain the prior distribution

of functions of interest that are relevant to the problem.

In the current setup, prior predictive analysis can accomplished by means of

forward simulation for iterations n = 1, ..., N from the prior distributions of parame-

ters

β(n) ∼ N(β,B−1) (2.1)

F (n) ∼ N(F ,H−1)

as well as the data y
(n)
.t for respondents t ≤ T . To obtain the latter the latent data

ỹ
(n)
.t are first drawn from the untruncated multivariate normal distribution

ỹ
(n)
.t ∼ N

(
Ztβ

(n), ([F (n)]′)−1(F (n))−1
)
. (2.2)

After that, the latent data ỹ
(n)
.t are converted to binary data y

(n)
.t , taking into account

the selection rule into the sample. That is, if y
(n)
1t is equal to “-1” (i.e. Medicare

claims are not available for respondent t or she has been enrolled in managed care at

the baseline) then y
(n)
2t (if stroke occurred) is missing and set to zero.
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Figure 2.1: Proportion of stroke from prior predictive analysis

In each panel the scatterplot shows the proportion of stroke in different risk groups for 1000
independent draws from the prior — the observed value is the intersection of the vertical
and horizontal lines. For each of 1000 draws from the prior, I generate the sample of 7367
artificial observations of the dependent variables. Each point represents the sample statistic
in one of those 1000 samples.

After repeating the forward simulation N times, it is possible to look at the

prior distribution of functions of interest h(y). Forward simulation can reveal de-
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Figure 2.2: Means and correlation coefficients from prior predictive analysis

Top panel shows the sorted means for the observed probability of stroke in each of 1000
iterations sorted in ascending order. Bottom panel shows the sample correlation coefficients
with responses converted into -1,0 and 1 sorted in the ascending order. The horizontal line
represents the observed value in both cases. For each of 1000 draws from the prior, I
generate the sample of 7367 artificial observations of the dependent variables. Each point
represents the sample statistic in one of those 1000 samples.
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ficiencies in the model if the distribution of h(y) coincides poorly with the prior

beliefs about this function. In general, prior predictive analysis interprets the model

specification in terms of observables that are usually easier to understand than the

parameters themselves (Geweke 2005). If there any deficiencies in the model, then

prior hyperparameters may be adjusted or a new specification can be chosen.

A set of prior hyperparameters should not be informative in the sense that

it should not favor any particular outcome a priori. On the contrary, prior should

allow for a wide array of reasonable outcomes without ruling out any result that is

remotely plausible. Prior should not also impose any unreasonable restrictions on the

distributions of functions of interest h(y). For example, if the prior distribution of the

probability of stroke assigns a 100% chance of a stroke for females in all N simulations,

then the prior hyperparameters or the model are not adequate and must be changed.

On the other hand, if in some proportion of simulations all, some or no females

experience a stroke, then the model and the prior parameters can be adopted. In the

current setup it is a prior belief that, conditional on the set of exogenous variables,

there is a reasonable probability that the outcome could be either “-1” or “+1” for

virtually any respondent in the sample.

The model hyperparemeters are set using g-prior (Zellner 1986) for the variance

matrix B−1. In particular, B−1 is block diagonal with each block i = 1, 2 defined

as gB · (Z ′
iZi)

−1 of the corresponding dimension ki × ki. In this expression Zi is a

T × ki set of explanatory variables in equation i. The prior variance for F is set

equal to H−1 = gH · Im(m−1)/2. One simple reason to use this prior is to reduce a
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rather large number of parameters to only three hyperparameters which facilitates

prior predictive analysis and estimation. A more subtle and fundamental reason is to

ensure the sensible magnitudes of variances for continuous versus binary covariates

that constitute the majority in the data set.

I set the prior means for β and F to 0. When the prior is specified as above,

the problem is reduced to choosing only two hyperparameters gB and gH . I found

that with gB = 5 and gH = 9, this g-prior is relatively non-informative in the sense

that it allows for virtually any plausible outcome for the functions of interest h(y).

Three functions of interest h(y) are considered: the proportion of stroke occurrences

in different risk groups, correlation coefficient for the discrete outcomes y
(n)
.t in two

equations and the mean predicted value of y
(n)
.t in the stroke equation.

All the results that follow are the prior probabilities based on 1000 simulations

from the prior distributions. Again, the prior should not rule out any plausible

outcome implying that each function h(y) should have prior range that is wide enough

to incorporate the observed outcome as well as almost any other reasonable value.

Figure 2.1 shows that the proportion of strokes in various risk groups takes values in

the range from almost 0 to almost 1. Similarly, Figure 2.2 indicates that the prior (i)

allows sufficient variability in the average probability of stroke in the sample and (ii)

is consistent with a variety of correlation patterns between the observed outcomes.

Table 2.3 shows that the empirical 95% interval from the prior distribution ranges

from almost 0 to almost 1 in various risk groups, but always includes the observed

proportion.
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Table 2.3: The prior probability of stroke in various risk groups

Parameter Observed h(yo) P−1[h(yo)] 2.5 % 97.5 %
Age 69-74 0.089 0.105 0.059 0.939
Age 85+ 0.086 0.087 0.054 0.945
Men 0.094 0.122 0.055 0.937
Women 0.107 0.159 0.060 0.939
Prior Stroke 0.185 0.282 0.054 0.956
Heart Disease 0.120 0.185 0.057 0.938
African American 0.127 0.195 0.050 0.945
Race White 0.096 0.137 0.061 0.939

Note: The second column represents the observed proportion of
stroke in the corresponding risk group. The third column is the
fraction of 1000 iterations from the prior distribution that were less
than the observed proportion h(yo). The last two columns are cor-
respondingly the values of h(y) that leave 2.5% and 97.5% of 1000
iterations below.

These figures and table show that the outcome observed in the AHEAD data

is well accommodated by the selected prior. It is also the case that the prior is not

restrictive, as it is consistent with a variety of other plausible outcomes.

2.4.2 Results of multivariate probit

The results reported herein are based on 50,000 Gibbs iterations (after drop-

ping the first 20% burn-in iterations).13

The results do not show any problems with stability if the Gibbs sampler is

13I describe the implementation of the algorithm in the first chapter. It takes between 7.4
and 7.8 seconds to obtain 1,000 draws from the Gibbs sampler when I use MATLAB 7.6.0
(R2008a) with a 64-bit Windows Vista operational system. I use Dell Precision workstation
with a dual-quad core processor Intel(R) Xeon (R) E5430 @ 2.66 GHz and a Memory (RAM)
of 8.00 GB.
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run 500,000 times.14 Consider Table 2.4 with the F parameter and the corresponding

ρ coefficient which is constructed as

ρ(j) =
−F (j)√
1 + F (j)2

(2.3)

for each iteration j = 1, ..., 60, 000.15 The t-ratio reported in column 4 does not

have the same interpretation as in classical econometrics but it can be used as a

quick guidance on whether the coefficient’s highest density posterior interval (HDPI)

contains zero.

Table 2.4: The results of 50,000 Gibbs draws for F and ρ

Parameter pmean pstd t-ratio Geweke’s CD
F 0.8171 0.0433 18.8907 0.3694
ρ -0.6321 0.0201 -31.4981 -0.3609

Note: “pmean” and “pstd” stand for the posterior mean
and standard deviation of the sample from 50,000 Gibbs
draws (not including 20% initial burn-in draws), “t-ratio” is
their ratio and “Geweke’s CD” stands for Geweke’s (1992)
convergence diagnostic statistics.

Tables 2.5 and 2.6 report the results for the coefficients in the stroke and

selection equation correspondingly.16 The Geweke’s (1992) convergence diagnostic

test does not indicate any convergence problems in any of the coefficients in the two

14The results are not reported, in order to save space, but are available upon request.

15The formula for ρ can be obtained from the variance matrix given my parameterization.

16The coefficients in the first (selection) equation are normalized by
√

1 + F 2(j) in each
draw j = 1, ..., 60, 000 to have variances comparable with the second equation.
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Table 2.5: The results for β coefficients (stroke equation)

Parameter pmean pstd t-ratio Geweke’s CD
Intercept -0.841 0.239 -3.523 0.570
Age 0.001 0.003 0.464 -0.030
Men -0.028 0.033 -0.839 -0.777
African American 0.060 0.046 1.325 -0.637
Hispanic 0.085 0.067 1.261 0.347
Widowed 0.041 0.034 1.207 0.307
Divorced/Separated -0.031 0.068 -0.462 -0.424
Never Married 0.104 0.084 1.227 -0.178
Religion not Important 0.061 0.047 1.305 -0.292
Grade School -0.023 0.038 -0.609 -0.833
College -0.038 0.037 -1.022 -0.661
Mobile Home 0.018 0.061 0.299 0.851
Multiple Story Home 0.041 0.031 1.320 0.391
BMI 0.003 0.003 1.030 -1.271
Diabetes 0.076 0.045 1.709 -0.276
Heart 0.029 0.033 0.880 -0.390
Hypertension 0.046 0.030 1.513 0.873
Previous Stroke 0.196 0.049 3.988 -0.055
Poor Self-Rated Health 0.025 0.050 0.497 0.917
Fair Self-Rated Health 0.043 0.036 1.192 -0.564
ADL Sum -0.014 0.021 -0.675 -0.896
IADL Sum 0.011 0.017 0.640 0.255
Picking up a Dime 0.066 0.054 1.231 -0.173

Note: “pmean” and “pstd” stand for the posterior mean and stan-
dard deviation of the sample from 50,000 Gibbs draws (not including
10,000 initial burn-in draws), “t-ratio” is their ratio and “Geweke’s
CD” stands for Geweke’s (1992) convergence diagnostic statistics.

equations. It appears that the multivariate probit model with sample selection works

well in terms of its convergence properties.

A closer look at the posterior means in Table 2.5 shows that they are often

about half of the mean obtained in Table 2.1 for the coefficients significant at the 10%

level. This indicates the strong prior centered at zero — it places the posterior means
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Table 2.6: The results for β coefficients (selection equation)

Parameter pmean pstd t-ratio Geweke’s CD
Intercept 0.359 0.213 1.683 -0.282
Grade School -0.018 0.031 -0.557 1.094
College 0.035 0.032 1.107 0.931
Income Zero 0.377 0.259 1.454 -0.696
Log of Income 0.031 0.016 1.968 0.053
Home Value Zero -0.084 0.190 -0.440 0.428
Log of Home Value -0.007 0.017 -0.384 0.403
# of Health Insurance Policies 0.049 0.022 2.231 -0.649
Long Term Care Insurance -0.045 0.039 -1.132 -0.339
Neighborhood Safety Poor/Fair 0.006 0.036 0.174 -0.717
Population over 1,000,000 -0.184 0.027 -6.751 0.061
Northeast region of US 0.034 0.036 0.950 -1.596
North Central region of US 0.020 0.032 0.627 -0.025
West region of US -0.028 0.039 -0.722 -0.075
ADL Sum 0.002 0.016 0.150 -1.481
IADL Sum -0.031 0.014 -2.296 0.292
Fall 0.029 0.029 1.010 -1.225

Note: “pmean” and “pstd” stand for the posterior mean and standard de-
viation of the sample from 50,000 Gibbs draws (not including 10,000 ini-
tial burn-in draws), “t-ratio” is their ratio and “Geweke’s CD” stands for
Geweke’s (1992) convergence diagnostic statistics.

approximately half the way from the estimates obtained using only the data. This

observation is confirmed by the prior sensitivity analysis. As I start relaxing the prior

by setting gB to 10, 100 and 1,000, I find that the posterior mean of F decreases to

0.633, 0.439 and 0.337 correspondingly. The posterior standard deviation increases

at the same time to 0.045, 0.089 and 0.157. Table 2.7 shows how the correlation

coefficient ρ changes with gB. The posterior means of the coefficients in the stroke

equation are getting closer to those in Table 2.1 as gB increases. Thus, prior sensitivity

analysis reveals that prior drives most of the results even though it is not restrictive,
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Table 2.7: The results of 50,000 Gibbs draws for ρ.

Parameter pmean pstd t-ratio Geweke’s CD
gB = 1 -0.9057 0.0082 -110.8968 -2.7330
gB = 10 -0.5341 0.0272 -19.6113 -1.0393
gB = 100 -0.3988 0.0677 -5.8886 -0.8000
gB = 1000 -0.3500 0.1299 -2.6944 -0.4746

Note: “pmean” and “pstd” stand for the posterior mean
and standard deviation of the sample from 50,000 Gibbs
draws (not including 20% initial burn-in draws), “t-ratio” is
their ratio and “Geweke’s CD” stands for Geweke’s (1992)
convergence diagnostic statistics.

as it was shown by the prior predictive analysis.

An interesting question is why the prior plays such an important role in the

stroke application. One possible reason is that most of the independent variables

are also binary: only age, body-mass index and self-reported income measures are

continuous and even those are not always important predictors in stroke or selec-

tion equation. Experiments with artificial data show that variation in continuous

covariates is indeed important for model performance.17 When I perform principal

component analysis for each of the six groups of explanatory variables, I find that the

first principal component explains about a quarter of the total variance, which shows

the lack of information in the independent variables.

The fact that the sample selection model with binary outcome did not find

strong selection effects in the data is consistent with two recent papers by Munkin

17This seems to be consistent with the observation in Leung and Yu (1996), who find
that the sample selection model works well only when there is enough variation in the
independent variables.
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and Trivedi (2003) and also Preget and Waelbroeck (2006). This does not undermine

the validity of the model, which can be used to test for the presence of selection in

other applications in health or empirical economics. Thus, neither propensity score

nor sample selection model indicate serious selection issues in the AHEAD data set

when applied in the study of stroke predictors.

2.5 Concluding Remarks

This chapter considers two different methods of dealing with the problem of

missing binary outcome variable in the context of the stroke occurrence among the

oldest Americans. The propensity score model based on the assumption of data

missing at random does not generate substantial differences in the significance of the

important risk predictors compared to using WTRNORM weight from the HRS.

The multivariate probit model with sample selection also does not find any strong

correlation in the data when the outcome and selection equations are estimated jointly.

Thus, the main substantive contribution of the paper is that there is no evidence of

selection in the AHEAD data based on either propensity score or sample selection

model when applied in the study of stroke predictors. In addition, this work is the

first application of the multivariate probit model of sample selection, developed in the

first chapter of the thesis, to the real data set. The model shows reasonable variability

in the prior distribution of the stroke occurrence and fast convergence.
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APPENDIX A
DERIVATIONS OF RESULTS IN CHAPTER 1

A.1 Conditional Posterior Distributions

This Appendix derives the conditional posterior distributions in the Gibbs

sampler. The posterior density kernel is the product of the prior for β, prior for

Fvector and augmented likelihood for ỹ′.ts

|B|1/2 exp
{
− 1

2
(β − β)′B(β − β)

}
(A.1)

· |H|1/2 exp
{
− 1

2
(Fvector − F vector)

′H(Fvector − F vector)
}

· |Σ|−T/2

T∏
t=1

exp
{
− 1

2
(ỹ.t − Ztβ)′Σ−1(ỹ.t − Ztβ)

}
I(ỹ.t ε Bt).

The three conditional posterior distributions can be obtained as follows.

(i) The conditional posterior kernel for β can be obtained from equation (A.1)

by collecting the terms that contain β and completing the square

p(β|Σ, ỹ) ∝ exp
{
− 1

2
(β′Bβ − 2β′Bβ + β′Bβ)

}
(A.2)

·
T∏

t=1

exp
{
− 1

2
(ỹ.tΣ

−1ỹ.t − 2β′Z ′
tΣ

−1ỹ.t + β′Z ′
tΣ

−1Ztβ)
}

∝ exp
{
− 1

2

(
β′(B +

T∑
t=1

Z ′
tΣ

−1Zt)β − 2β′(Bβ +
T∑

t=1

Z ′
tΣ

−1ỹ.t)
)}

∝ exp
{
− 1

2
(β − β)′B(β − β)

}
,

where B = B +
∑T

t=1 Z ′
tΣ

−1Zt is the posterior precision and

β = B
−1

(Bβ +
T∑

t=1

Z ′
tΣ

−1ỹ.t)

is the posterior mean for β.
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(ii) The alternative expression for the density of ỹ

p(ỹ|y, β, F,D) ∝
m∏

i=1

exp
{
− 1

2

T∑
t=1

(εt,i + F ′
i+1:m,iεt,i+1:m)2

}
, (A.3)

is derived in the text. Remembering that Fvector = [F ′
2:m,1, ..., F

′
m,m−1]

′ one can collect

the terms in the posterior density kernel (A.1) as

p(Fvector|β, ỹ) ∝
m−1∏
i=1

exp
{
− 1

2
(Fi+1:m,i − F i+1:m,i)

′H i(Fi+1:m,i − F i+1:m,i)
}
(A.4)

·
m−1∏
i=1

exp
{
− 1

2

T∑
t=1

(εt,i + F ′
i+1:m,iεt,i+1:m)2

}

∝
m−1∏
i=1

exp
{
− 1

2

(
F ′

i+1:m,iH iFi+1:m,i − 2F ′
i+1:m,iH iF i+1:m,i + F i+1:m,iH iF i+1:m,i

)

·
m−1∏
i=1

exp
{
− 1

2

( T∑
t=1

ε2
t,i + 2F ′

i+1:m,i

T∑
t=1

εt,i+1:mεt,i

+F ′
i+1:m,i

( T∑
t=1

εt,i+1:mε′t,i+1:m

)
Fi+1:m,i

)}

∝
m−1∏
i=1

exp
{
− 1

2

(
F ′

i+1:m,i

(
H i +

T∑
t=1

εt,i+1:mε′t,i+1:m

)
Fi+1:m,i

−2F ′
i+1:m,i

(
H iF i+1:m,i −

T∑
t=1

εt,i+1:mεt,i

))}

∝
m−1∏
i=1

exp
{
− 1

2

(
Fi+1:m,i − F i+1:m,i)

′H i(Fi+1:m,i − F i+1:m,i

)}

where H i = H i +
∑T

t=1 εt,i+1:mε′t,i+1:m is the posterior precision and

F i+1:m,i = H
−1

i H i F i+1:m,i −H
−1

i

T∑
t=1

εt,i+1:mεt,i

is the posterior mean. It is understood that H i is the ith element of the block-diagonal

prior precision matrix H with dimensions decreasing from (m− 1)× (m− 1) for the

first block to 1 × 1 for the last block. The final step is to organize i = 1 : m − 1
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multivariate normal distributions in the last line of equation (A.4) into one

p(Fvector|β, ỹ) ∝
m−1∏
i=1

exp
{
− 1

2

(
Fi+1:m,i − F i+1:m,i)

′H i(Fi+1:m,i − F i+1:m,i

)}

= exp
{
− 1

2

(
Fvector − F vector)

′H(Fvector − F vector

)}
, (A.5)

which is used in the text. Since Fvector = (F ′
2:m,1, F

′
3:m,2, ..., F

′
m,m−1)

′ with F ′
j+1:m,j =

(fj+1,j, ..., fm,j) for j = 1, ..., m− 1 being the vectors under the main diagonal of F

F (n) =




1 0 0 · · · 0

f
(n)
21 1 0 · · · 0

f
(n)
31 f

(n)
32 1 · · · 0

...
...

...
. . .

...

f
(n)
m1 f

(n)
m2 f

(n)
m3 · · · 1




.

one can construct the covariance matrix Σ as

Σ = (F ′)−1F−1. (A.6)

(iii) Finally, the latent data ỹ.t are drawn for each respondent t ≤ T from

the truncated multivariate normal distribution as in Geweke (1991) conditional on

Zt, β and F, as well as ỹ.t obtained in the previous draw. The multivariate normal

distribution is truncated to the region defined by the m×2 matrix [a, b] with a typical

row i equal to (0,∞) if yit = 1 and (−∞, 0) if yit = −1. If yit is not observed, then

row i is (−∞,∞)

A.2 Identification

Meng and Schmidt (1985) apply the general principle developed in Rothenberg

(1971), that the parameters are (locally) identified if and only if the information
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matrix is nonsingular, to the censored bivariate probit model. I extend their result

to the sample selection model with one binary selection and one binary outcome

equation.

Let θ = [β1, β2; f21] be the vector of parameters that is used to construct the

information matrix

I(θ) = E
[(∂ ln L

∂θ

)(∂ ln L

∂θ′

)]
. (A.7)

The information matrix in the censored bivariate probit is

I(θ) = C ′
1C1 + C ′

2C2 + C ′
6C6, (A.8)

as shown in Meng and Schmidt (1985). In this expression each matrix C ′
j for j = 1, 2, 6

is of dimension (2k + 1)× T and

the tth column of C ′
1 is 1√

F t

∂F t

∂θ

the tth column of C ′
2 is 1√

Φt
1−F t

∂[Φt
1−F t]

∂θ

the tth column of C ′
6 is 1√

1−Φt
1

∂[1−Φt
1]

∂θ
.
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After the simplification the information matrix I(θ) takes the form




∑T
t=1

(
∂F t

∂β1,1

)2

ωt
1

+
(

∂Φt
1

∂β1,1

)2

ωt
2 · · · I(1,k1) I(1,k1+1) · · · I(1,k) I(1,k+1)

− 2
Φt

1−F t

∂Φt
1

∂β1,1

∂F t

∂β1,1

· · · · · · · · · · · · · · · · · · · · ·

∑T
t=1

∂F t

∂β1,1

∂F t

∂β1,k1
ωt

1

+
∂Φt

1

∂β1,1

∂Φt
1

∂β1,k1
ωt

2 − 1
Φt

1−F t · · · · I(k1,k1) I(k1,k1+1) · · · I(k1,k) I(k1,k+1)

· ∂Φt
1

∂β1,1

∂F t

∂β1,k1

∂F t

∂β1,1

∂Φt
1

∂β1,k1

∑T
t=1

∂F t

∂β1,1

∂F t

∂β2,1
ωt

1 · · · I(k1+1,k1)

(
∂F t

∂β2,1

)2

ωt
1 · · · I(k1+1,k) I(k1+1,k+1)

− 1
Φt

1−F t

∂Φt
1

∂β1,1

∂F t

∂β2,1

· · · · · · · · · · · · · · · · · · · · ·

∑T
t=1

∂F t

∂β1,1

∂F t

∂β2,k2
ωt

1 · · · I(k,k1)

∑T
t=1

∂F t

∂β2,1

∂F t

∂β2,k2
ωt

1 · · · I(k,k) I(k,k+1)

− 1
Φt

1−F t

∂Φt
1

∂β1,1

∂F t

∂β2,k2

∑T
t=1

∂F t

∂β1,1

∂F t

∂f21
ωt

1 · · · I(k+1,k1)

∑T
t=1

∂F t

∂β2,1

∂F t

∂f21
ωt

1 · · · I(k+1,k)

(
∂F t

∂f21

)2

ωt
1

− 1
Φt

1−F t

∂Φt
1

∂β1,1

∂F t

∂f21




,

where I use the weights ωt
1 =

[
1

F t + 1
Φt

1−F t

]
and ωt

2 =
[

1
Φt

1−F t + 1
1−Φt

1

]
. Since the
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information matrix is symmetric, I use I(h,j) to denote the corresponding I(j,h) mirror

elements in I(θ). Some entries in the matrix are not shown to save space and take

the values as below

I(k1,k1) =
(

∂F t

∂β1,k1

)2

+
(

∂Φt
1

∂β1,k1

)2

ωt
2 − 2

Φt
1−F t

∂Φt
1

∂βk1,k1

∂F t

∂βk1,k1
,

I(k,k1) = ∂F t

∂β1,k1

∂F t

∂β2,1
ωt

1 − 1
Φt

1−F t

∂Φt
1

∂β1,k1

∂F t

∂β2,1
,

I(k,k1) =
∑T

t=1
∂F t

∂β1,k1

∂F t

∂β2,k2
ωt

1 − 1
Φt

1−F t

∂Φt
1

∂β1,k1

∂F t

∂β2,k2
,

I(k+1,k1) =
∑T

t=1
∂F t

∂β1,k1

∂F t

∂f21
ωt

1 − 1
Φt

1−F t

∂Φt
1

∂β1,k1

∂F t

∂f21
,

I(k,k+1) =
∑T

t=1
∂F t

∂β1,k2

∂F t

∂f21
ωt

1,

and I(k,k) =
(

∂F t

∂β2,k2

)2

ωt
1.

Consider the (k1 + 1)th row in the information matrix corresponding to the

second intercept and the last (k + 1)th row corresponding to the variance parameter

f21. If ∂F t

∂f21
equals c ∂F t

∂β2,1
for all t then the two rows are the same up to that constant

c which is independent of t. In this case the information matrix is singular and the

parameters in the bivariate sample selection model are not identified.

Meng and Schmidt (1985) show that

∂F t

∂β2,1

= φ(Z2tβ2)Φ

(
Z1tβ1 − ρZ2tβ2√

1− ρ2

)
, (A.9)

where φ(·) and Φ(·) are the standard univariate normal density and distribution

functions. If Z1tβ1 = ρZ2tβ2 then this derivative is equal to φ(Z2tβ2)/2. They also

show that if Z1tβ1 = ρZ2tβ2 then ∂F t

∂ρ
= φ(Z2tβ2)√

2π(1−ρ2)
. In my formulation ρ = −f21√

1+f2
21

and the model parameters are not identified if Z1tβ1 = −f21√
1+f2

21

Z2tβ2.
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APPENDIX B
DESCRIPTIVE STATISTICS OF THE SAMPLE IN CHAPTER 2

Table B.1: Means and standard deviations of the independent variables

Variable Description Mean St.Dev.
Age Age at baseline 77.624 5.895
Men 1 if Men 0.393 0.488
African American 1 if African American 0.134 0.341
Hispanic 1 if Hispanic 0.055 0.228
Widowed 1 if widowed 0.407 0.491
Divorced/Separated 1 if divorced or separated 0.054 0.226
Never Married 1 if never married 0.031 0.173
Religion not Important 1 if religion not important 0.109 0.312
Grade School 1 if completed grade school 0.278 0.448
College 1 if completed some college 0.258 0.438
Income Zero 1 if income zero 0.003 0.058
Log of Income Log of (positive) income 9.737 1.040
# of Health Insurance Policies # of policies 0.833 0.620
Long Term Care Insurance 1 if available 0.112 0.316
Neighborhood Safety Poor/Fair 1 if safety poor or fair 0.146 0.353
Home Value Zero 1 if homevalue zero 0.267 0.442
Log of Home Value Log of homevalue if > 0 8.131 4.969
Population over 1,000,000 1 if population > 1 million 0.487 0.500
Northeast region of US 1 if Northeast 0.197 0.398
North Central region of US 1 if Central 0.259 0.438
West region of US 1 if Mountain/Pacific 0.156 0.363
Mobile Home 1 if lives in mobile home 0.068 0.252
Multiple Story Home 1 if multiple story home 0.384 0.486
BMI Body mass index 25.365 4.502
Diabetes 1 if diabetes (1993) 0.127 0.333
Heart 1 if heart disease (1993) 0.288 0.453
Hypertension 1 if hypertension (1993) 0.457 0.498
Previous Stroke 1 if stroke (1993) 0.099 0.299
Poor Self-Rated Health 1 if poor self-rated health 0.134 0.340
Fair Self-Rated Health 1 if fair self-rated health 0.234 0.424
ADL Sum # of difficulties 0.386 0.928
IADL Sum # of difficulties 0.487 1.110
Fall 1 if fell down 0.254 0.436
Picking up a Dime 1 if has difficulty 0.087 0.282
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